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Abstract. Two representations in multifractd analysis. the so-called q and r rep-ntations, 
are discussed theoretically and computed practically. Complementary to the standard 9- 
representation, the so-called r-representation is especially suited to resolving the most rarified 
subsets of the distributed measure. Moreover, these [WO representations are especially adapted, 
respectively. to the well known fixed-sire and f i x e d - h s  box-counting algorithms. Both 
strategies are fint applied to iteratively constructed mathematical measures. Once tested in 
this way, we use them to analyse the mass distribution and the growth probability distribution 
of an experimental electrodeposited panem. 

1. Introduction 

Currently the characterization of a measure distributed on a support may be attempted by 
using elements of multifractal analysis [I, 21. Both the measure and the support are in 
practice obtained either from iterative mathematical processes or from experimental data. 
One way to base the multifractal analysis is proposed by Falconer [3] through the use of 
the expression 

where q and T are real numbers and pi and &i are random quantities that represent, 
respectively, the measure factor and the size factor. The sum is extended over all the 
separated parts, N ,  composing the object and E denotes expectation (the average value). 
Defined in this way, the function @ represents the coupled q-moment of the measure and 
the -t-moment of the size$. When exactly iterated mathematical measures are examined 
in this way the values q and z are shown to satisfy @(q, t) = 1 [7], and thus expression (1) 
can be written as 

N 
p a s 7  = 1 . (2) ~ 

i = 1  

On the other hand, when an attempt is made to characterize an experimental measure, 
expression (1). resolved either with pi = cnt or E; = cnt, is assumed to collapse into a 
constant value function @(q, T). 

t E-mail address: jordi@daphne.qf.ub.es 
$ In some more mathematically oriented papers [3, 41 a positive variable is defined as @ = -r, and in others 
[5, 61 they use y = -r. 
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If E; = cnr, the size factor ( E )  can be taken out of the sum. Then directly from (I), 

where N ( E )  is the number of parts with size E,  needed to cover the whole support +here 
the measure is defined. 

On the other band, if the averaged quantity in (1) is weighted with the probability 
disbibution pi ,  we have 

(p(*-l)&-r)p - cnr . (4) 

p - cnt j ( E - ‘ ) ~  - p’-* 

Now, if we take p = cnf,  expression (4) converts into 

(5) 
where ( ) p  indicates the average value computed according to the probability distribution 
Pi. 

In this way we have derived two alternative representations of multifractal indices, 
taking either q or r as the fundamental moment. Note, in addition, that according to their 
respective definitions, each one of these representations is particularly well adapted to one 
of the two versions of the box-counting algorithms, i.e. fixed-size or fixed-mass 15, 6, 8, 91, 
commonly used in this context. 

The multifractal indices used to characterize a non-uniform measure are: (i) the set of 
generalized fractal dimensions Dp = T/ (q  - 1) introduced by Grassberger, Hentschel and 
Procaccia @-IO]; (ii) the so-called Holder exponent [l] 01, satisfying CY = dr/dq; and (iii) 
the Legendre transformed function  CY), defined as  CY) = qa - r. The primary aim of 
this paper is then to conveniently express and interpret these multifractal indices in the two 
representations commented on above. 

In section 2 we review the well known properties of the functions 01 and  CY) 
expressed in terms of q .  Hereafter, we refer to this formulation as the q-representation. 
Alternatively, in section 3 we present the properties of the functions CY and f(01) expressed 
in terms of r. Hereafter, we refer to this formulation as the r-representation. In 
order to show the complementary nature of these two representations, in section 4, 
we present three examples generated via an iterated mathematical process [7, 14, 
for which the multifractal behaviour may be solved exactly: one generated with the 
size factor fixed, the other generated with the measure factor fixed and the third one 
generated without fixing any of the factors which define the measure. In section 5 
we show how this dual formalism is easily adapted to box-counting algorithms in 
their versions of fixed size or fixed mass. These algorithms are first tested with 
the mathematical generated examples of multifractal measures inmduced in section 4. 
Finally, in section 6 we apply these algorithms to two measures (mass distribution and 
growth probability distribution, GPD) defined on an experimental electrodeposited pattern. 

2. Properties of the mnllifractal indices in the q-representation 

Here we summarize the most important properties of the multifractal indices in the q- 
representation (3) (demonstrations can be found in Halsey et al [7] and in Cawley and 
Mauldin 141). In this case r = r(q). Moreover, r’(q) = dr(q)/dq = CY@) = CY* 01 

and the Legendre transform of r(q) is f(or(q)) = qc&) - r(q)  CY) 5 f, = f. From 
the fact that r’(q) > 0, r(q) is a strictly increasing function of q,  t o  = -Ds (the fractal 



dimension of the support of the measure, which coincides with DO) and q = 0. In 141 it 
is demonstrated that either r"(q) < 0 or T " ( q )  = 0, which, respectively, implies that "(4) 
is either strictly decreasing (multifractal measure) or constant and equal to Df (self-similar 
measure). It is easy to see from the Legendre transform that fo = Or. f t  = a1 = DI and 
f ' (u(q))  = qr"(q). So either f ( a )  is constantly equal to Dr or f(u) is strictly increasing 
from 4 = -00 to q = 0 and shictly decreasing from q = 0 to 00. The asymptotic 
behaviour of a(q) and f (a(q))  when q + *too can be summarized in the following way: 
a*- = D+, is a finite positive number and Or > f(a+,) 2 0. All these properties are 
summarized in figure 1 and table 1. 
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3. Properties of the multifractal indices in the 7-representation 

In this case we have, alternatively, q = q(r). According to (5). the propexties of the 
multifractal indices are, however, similar to those in the q-representation, with --5 playing 
the role of q and 1 - q(T) that of t (q ) .  We can thus define, as in 15, 6,  121, b(t) = 
r/ (q(r)  - 1) = b,. Moreover, d(l -q(r))/d(--5) = dq(t)/dr = q‘(s) =_ G ( T )  = iuz = iu, 
which implies that & and --5 are conjugated variables. Then, the Legendre transform 
of (1 - q ( t ) )  is f(iu(r)) = -tii.(t) - (1 - q(r)) f, It is easy to 
demonstrate that q’(7) > 0 and then that q(r) is a strictly increasing function of r,  qo = 1 

( C )  

Figurr 2. Multifractal indices in the r- 
representation. ia) Plot of q ( r )  Venus r. (b) 
Plot of 5 and f (ir) versus r.  ( c )  Spectrum -1 

L. aa 6- of sinphities f ( ~ ) .  
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Table 3. Equivalences between the two representations. 
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Reomentation 0 T -  

Moment 4 - f a  

Scaling exponent r(s) 1 - d r )  
Generalized dimensions D, 0: 
conjugate variable 
of the moment 
Lesndre transform of the 
scaling exponent 

a(q) = 1/3(r) 

f b ( q ) )  = ( I  + f@(T)))/C(T)' 

and q-Df = 0. Moreover, either q"(r) t 0 for all r ,  or q"(r) = 0 which, respectively, 
implies that %(r) is either strictly increasing (multifractal measure) or constant and equal to 
ljDf (self-similar measure). It is easy to see from the Legendre transform that = 0 and 
F(G(r)) = -rq"(r). Thus, either f (&(r ) )  is constantly equal to 0 or f (G(r ) )  is strictly 
increasing from r = -W to r =-0 and strictly decreasing from r = 0 to r = W. The 
asymptotic behaviour of h(r) and f ( G ( r ) )  for r 4 &W can be summarized in the following 
way: Gim is a finite positive number and 0 P ?(E+-) > -1. All these properties are 
summarized in figure 2 and table 2. Furthermore, a summary of the equivalences between 
the two representations is presented in table 3. 

4. Exactly soluble examples 

Next we apply the previous formalisms to iterated mathematical measures. We start with 
an original region whose measure and size are taken arbitrarily as unity. Divide the region 
into N pieces with measure pi and size &i. At the next step each piece of the set is further 
divided into N pieces, each with a measure reduced by a factor pj and size reduced by 
a factor ~ j ,  and so on [7, 10, 111. Figure 3 shows an example of this iterative method 
that allow us to construct multifractal measures with different size and different measure 
factors. 

4.1. Example I 

If all pieces have the same size E; = E, then from (2) [7, 111 

and since t is expressed as a function of q,  (Y and f admit simple expressions in this 
representation. Using the definitions quoted above we obtain 

where $r = p : j  cy=, pi. 4 

5 8 The summarized results for the particular case of N = 3, p ,  = 4, p 2  = p3  = E 
and E = 1 can be found in the first column of table 4. 
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k = l  

U 
k = 3  k=a, 

Figure 3. Example of the geaeration of an iterated mathematical multifracfal with different size 
and different measure factors. Here we show the three first iteralions and the inhnile one. 

hble 4. Some representative multifractal indices in the q-representation of the exactly soluble 
multifractal with equal size and different measure. The parameters are N = 3, pi - A,  p2 = &. 
m = 6 and E = f .  Computed results are obtained using a box-counting fixed-size algorithm 
on a gnd of 512 x 512 pixels (scaling corresponds IO 2.53 ,< L < 47.18 pixels). 

p Singularity exponent Mathematical result Computed result 

-m a-,=D-, 2.415 04 - 
f (a--) 0.00000 - 

-2 r-2 -5.41564 -5Ri0.3 
D-2 1.805 21 1.7 i 0.3 
a-2 2.10563 3.7 * 0.2 
f (U-2)  1.204 37 0.2 * 0.1 

0 f (uo) = Do = Df 1.58946 1.61 k0.02 
00 1.69770 1.72& 0.04 

1 f (ut) = (11 = DI 1.47722 1.49 i 0.01 
3 r3=2D)  2.62496 2.66 * 0.04 

20 m 19.9999 23.1 i0.2 
9 0  1.052 63 1.2 i 0.2 
U20 1 .om 06 1.1 i o . 1  
f (020) 0.001 24 0.2 i 0.1 

+m u + ~ - D + x  1 .ooo 00 - 
f (e+=) 0.000 00 - 
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4.2. Example 2 

Another example is given by the case in which all pieces have equal measures, pi = , p ,  but 
different sizes, E ( .  In this case, manipulating (2) we obtain 

(83 

and here q is clearly a function of r ,  which allows us to use the 5:Fepresentation to obtain 
6 and f. Note that (8) does not contain (1 - q )  because we need to start from (2) 
(iterative multifractal process) and not from (5) (experimental or simulated pattern). Using 
the definitions of 6(r)  and f (&(r ) )  quoted above, we obtain 

where Zi = E;'/ cy=, &yr. 
for the particular case of N = 3, E ,  = 0.6, E? = 0.4, E.J = 0.3 and p = f .  

The first column of table 5 summarizes the multifractal behaviour in the r-representation 

TabIe 5. Some representative multifractal indices in the r-representation ofthe exactly soluble 
multifractal with equal measure and different size. The parameters  are^ N = 3, EI  = 0.6. 
~2 = 0.4, e3 = 0.3 and p = f. Computed results are obtained using a box-counting fixed-mass 
algorithm on a grid of 512 x 512 pixels. The regression range is the standard in our fixed-mass 
algorithm. 

r Singularity exponent Mathematid result Computed result 

8 48 
as 

-W 

0.46497 
- 1.000 00 

2.15066 

-23.249 
0.46497 

- 1.000 00 
2.061 97 

0.00000 
0.699 93 

-0.06530 
1.33543 

1.00000 
0.79831 
0.oooM) 
1.252 65 

8.85730 
1.06993 

-0.702 10 
1.01816 

1.09590 
- 1 .ooo 00 

0.91249 

W 

- 
- 
- 
- 

-23.7 f 0.2 
0.49 * 0.01 

-0.25 * 0.06 
2.03 &0.02 
0.10 * 0.01 
0.634 * 0.005 

-0.03 +O.Ol 
1.49 i 0.01 
- 
0.71 f 0.01 

1.41 f 0.02 

8.34* 0.07 
1.01 f Q . O 1  

-0.77 f 0.03 
1.09*0.01 

- 

- 
- 
- 
- 
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4.3. Example 3 

In this last example we composed an object with neither the size nor the measure fixed 
(figure 3). In this case it is not possible to find an explicit function q(r) or t ( q )  from (2). 
In order to obtain the pair of values (q,  r) .  we use the Newton-Raphson method, which 
converges very quickly. For each pair of values (q,  r )  the quantities a(q), f(or(q)), &(r) ,  
r(G(r)) are determined using the definitions explained in sections 2 and 3. The explicit 
expressions for a(q) and f (a (q ) )  can be found in Cawley and Mauldin [4]: 

N N 

i=l 

N N 

i= L  i=l 
f (a(q)) = p;&;r log (pB&;r) / p?&;r log&;. (11) 

For the expressions of G(r)  and f(G(r)) we use the definitions introduced in section 3, 
which can be written as 

The first columns of tables 6 and 7 summarize, respectively, the multifractal behaviour 
for the particular case N = 3, E ,  = 0.6, E Z  = 0.4, &3 = 0.3 and PI = z, pz = A,- 
p3 = * when the q-representation and r-representation are used. Note that in this case 

3 

Tablf 6. Some representative multifnctal indices in the q-represenfation of the exactly soluble 
multifracwl with different size and different measure. The parameters are N = 3, & I  = 0.6, 
E X  = 0.4. &3 = 0.3 and pi = A,  p2 = a. m = A. Computed results are obtained using 
a box-counting fixed-size algorithm on a grid of 512 x 512 pixels (scaling corresponds to 
3.43 4 E 4 109.7 Dixels). 

5 

~~ 

q Singularity exponent Mathematical result Computed result 

- 
.~ 

-m a - , = D - ,  3.277 00 
0.00000 - f ( U - d  

-2 T-2 -6.60459 -4.2 & 0.3 
D-2 2.201 53 1.410.3 
U-2 3.18321 3.1 b 0.1 
f (U-2)  0.238 16 0.4 & 0.1 

0 f (c lo)  = Do= Dj 1.33543 1.37 1 0.02 
a0 1.72603 1.73 & 0.05 

1 f (ai) = 011 = Di 1.04046 1.07 i 0.03 
3 r3 =2Ds 1.59552 1.6610.07 

20 no 11.5143 12.1 * 0.2 
D20 0.60602 0.6 1 0.2 
020 0.575 72 0.61 +0.06 
f ((120) 0.00003 0.02 f 0.05 

+a0 a + , = D + ,  0.575 72 - 
f (e+,) 0.00000 - 
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Table 7. Some representative mulrifractal indices in the r-representation of the exactly soluble 
multifractal with different sire and different meacme. The parameters are N = 3. E I  = 0.6, 

= 0.4, E? = 0.3 and PI = 4. p z  = 6. p3 = 6. Computed resulo, are obtained using a 
box-counting fixed-mass algorithm on a grid of 512 x 512 pixels. The regression range is the 
standard in our fixedmass alplorithm. 

~ 

r Singularity exponent Mathematical result Computed result 

--oo 
0.305 16 

- 1 .ooo 00 
3.27700 

-15.258 
0.305 16 

-1.000 00 
3.07544 
0.0w00 
0.579 36 

-0.22640 
1.33543 

1.00000 
0.961 1 1  
0.00000 
1.04046. 

13.8959 
1.73673 

-0.99793 
0.62035 
m 
1.736 97 

-1.00000 
0.575 72 

- 
- 
- 
- 

-15.1 *0.7 
0.31 * 0.01 

-0.6 f 0.3 
3.1 +0.1 
0.02 j, 0.03 
0.60 f 0.02 

-0.17 f 0.01 
1.37 f 0.04 
- 
0.94 * 0.01 

1.12*0.02 
- 

12.7 j, 0.3 
1.60 f 0.04 
- 1.2fO.2 

0.69 fO.02 
- - 
- - 

the two representations may be equally used to characterize the multifractal behaviour 
of this distributed measure. It is also easy to check the equivalences between the two 
representations as Iisted in table 3. 

5. Application to box-counting algorithms 

When experimental, rather than mathematical, measures have to be examined in terms of 
their multifractal properties we need to resort to box-counting algorithms. The two most 
popular routines are the fixed-size and fixed-mass algorithms. As is shown in what follows, 
each one is particularly adapted to one of the two representations presented above. 

5.1. Box-counting &ed-size algorithm 

The well known fixed-size box-counting algorithm is based on (3) and the mean value is 
obtained as an averaged value of the so-called partition function Z4(&) = E,"=': pi"(&) [S, 91 
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Clearly, in this case r is expressed as a function of q. Thus it seems natural to use the 
q-representation to obtain expressions for the LY and f indices. Following the treatment of 
Chhabra and Jensen [13], which avoids the numerical use of the Legendre transform, we 
have [14-18] 

N ( d  4 where j i ( E )  = P ~ ( E ) / C ~ = ~  p j  (d. 
Note that, as expected, expressions (14H16) bear a close similarity with those used for 

the exactly soluble example 1. The second column of table 4 summarizes the computed 
values of the more relevant multifractal indices in the q-representation for the exactly soluble 
multifractal of equal size (example 1). The computed results and the exact values show a 
good agreement only for q > 0 (given their error bars). For very large values of q some 
round-off errors can be detected. On the other hand, for q < 0 the computed e(q) values 
are significatively greater than the exact ones and this is due to the computational sa-ategy 
of the implemented algorithm [18]. 

5.2. Box-counting fued-mass algorithm 

In the case of the box-counting fixed-mass algorithm introduced by Badii and Politi [5, 61 
it is shown that from (5), 

where N ( p )  is the number of boxes with measure p used to evaluate the average in (5). Note 
that N ( p ) ,  in this case, does not necessarily count all the boxes with equal measure needed 
to cover the pattern, but only a predefined subset [12, 181. In this case q is expressed as a 
function of r, thus it seems natural to use the r-representation in order to obtain expressions 
for 6 and f indices. With some algebra, and following a similar procedure to that employed 
for the fixed-size algorithm, we obtain: 

N ( p )  --I where 
These expressions, again as expected, show close similarities with those used for the 

exactly soluble example 2, but with the difference that here we take an average over a 
subset of boxes having the same mass ( p ) .  

The last expressions (17H19) enable us to implement the fixed-mass box-counting 
algorithm, and obtain all the multifractal indices directly, i.e. the f ( 6 )  and then the f(e) 
spectrum of singularities. These expressions are particularly useful in the study of the 
multifractal behaviour at q < 0, i.e. at 5 < 0, precisely where the fixed-size algorithm 
fails. The regression range of p is standardized choosing the maximum value of p of the 

= ~,:‘/[l/N(p) Cj=, cj I. 
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distribution as the lowest bound and the maximum value of p resulting from box-counting 
as the greatest bound [IS]. 

The second column of table 5 summarizes the computed values of some multifractal 
indices in the s-representation for the exactly soluble multifractal of equal measure 
(example 2). The agreement is very good for q(r)  and for &(r) indices, specially for t << 0 
(9 << 0) giving a good estimation for CU-, (l/m-,), the asymptotic value. However, the 
f (t) index is overestimated, especially for t < 0. This is nothing but artefact of the 
computational strategy of the implemented fixed-mass algorithm [IS], here applied to an 
iterated multifractal with few iterations. Actually, we have taken a grid of 512 x 512 pixels 
to reproduce the usual working conditions with experimentally determined measures. Then, 
acceptable standard errors in G(s) and q(t) indices (-1%) for s << 0 (e.g. -50) propagate 
an standard error of 5&100% [IS]. 

5.3. The use of both box-counting algorithms 

For the exactly soluble multifractal of different size and different measure (example 3, 
see figure 3), table 6 summarizes some computed values of multifractal indices in the q- 
representation obtained using the fixed-size algonihm and table 7 the corresponding results 
in the s-representation using the fixed-mass algorithm. For this case, the computed values 
show good agreement  with the exact ones. 

Summarizing the above results, we conclude that the fixed-size algorithm should be used 
in the q-representation and is especially suited for q 2 0, whereas the fixed-mass algorithm 
should be used, complementarily, in the s-representation where it is especially suited for 
T < 0. Transforming, according to the previously introduced equivalences, we complete 
either one of the pair of representations to finally end up with a whole range robust and 

( b )  

Figure 4. Indices r versus q ( a )  and [I and f ([I) versus q (b)  for the exactly soluble example 
with different size and different measure. The full c u m  represents the exact behaviour and 
the discrete points stand for the values computed with the two pmposed algorithms: fixed Size 
(0) and fixed mass (0). The regression mge for the fixed-size algorithm is 3.43 6 e < 109.7 
pixels. The regression m 5  for the fixed-mass algorithm is the standard. Standard errors on q 
values, when fixed-mass algorithm is used, are omitted for the sake of simplicity in (b). 
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Figure 5. (a )  Indices r versus q and (b) and f (a) versus 9 for the exactly soluble example 
with equal size and different measure. The full curve represents the exact behaviour and the 
discrete points stand for the values computed with the two proposed algorithms: fixed size (e) 
and fixed mass (0). The regression range for the fixed-size algorithm is 2.53 < e < 47.18 
pixels. The regression range for the fixed-mass algorithm is the standard. Standard errors on 9 
values, when fixedmass algorithm is used, are omitted for the sake of simplicity in (b). 

reliable multifractal description [14, IS]. This is exactly the strategy that we have followed 
to construct the results depicted in figure 4. 

To emphasize the appropriateness of the fixed-mass algorithm when trying to evaluate 
the asymptotic value of (I/.-,), we show in figure 5(b) plots of 01, f (01)  versus q. 
This figure shows that the estimation of 01 with the fixed-size algorithm is, for q slightly 
negative, already almost two times greater than the exact value. In contrast, the 01 values 
obtained with the fixed-mass algorithm axe very close to the exact ones. 

6. Application to experimental measures 

Quasi-two-dimensional electrochemical deposition (ECD) is a typical example of pattern 
formation under non-equilibrium conditions. Typically in these experiments, a metallic 
deposit is formed in a thin layer of an aqueous electrolyte solution containing the metal 
cation. It has been clearly shown that different electrodeposit morphologies are obtained 
when control parameters, including applied potential or current, cation concentration, cell 
dimensions, etc [19, 201 are adequately modified. 

Among the different electrodeposit morphologies, open-fractal structures are formed 
in zinc electrodeposition experiments. using a film cell at small applied potential values 
(experimental conditions are listed in the caption of figure 6). In this case, fractal 
concepts are necessary, not only to characterize these aggregates morphologically, but most 
interestingly to capture the subtle details of their dynamical evolution and general behaviour. 

In order to describe the multifractal behaviour of the mass distribution of the open- 
fractal electrodeposits, a particular electrodeposit is chosen (figure 6) [16, 19, 201. Figure 7 
shows the joined T versus q function in the q-representation obtained using the fixed-size 
algorithm for q > 0 and the fixed-mass one for 5 < 0. This linear behaviour corroborates 
the uniform, non-multifractal, characteristic of the mass distribution measure for a range of 
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Figure 6. Quasi-mo.dimmsional electrodeposit grown in a p&dIel cell (70 flm thickness, 
electrode length 3.5 cm and electrode separation 3 cm). Open-fractal morphology (512 pixels 
6.5 mm), grown at [ZnSOal = 0.4 M and AV = 6 V. 

q (-28 < q < 25) wider than in any previous work [14, 16, 19, 211. A linear regression fit 
of r versus q gives from its slope the fractal dimension Or, estimated as (Dq)  = 1.68t0.02; 
which is in agreement with previous results 114, 16, 19, 211 and similar to that obtained for 
DLA patterns D~(DLA) = 1.6-1.7 [14, 221. 

In order to gain a better understanding of the grow,th dynamics governing fractal 
electrodeposition, we would need to compare the multifractal scaling of the experimentally 
computed growth probability distribution (GPD), with that  corresponding to a Laplacian 
growth mode 116, 171. Here, we only present the multifractal scaling behaviour of this 
measure obtained assuming a Laplacian growth mode [15, 171, for the open-fractal zinc 
electrodeposit examined above (figure 6). The GPD on every perimeter site of the metallic 
aggregate is computed here in terms of the normal gradient of a Laplacian field, V2@ = 0, 
solved with boundary conditions @ = 0 at the perimeter and @ = 1 far away from it. 
In figure 8 plots of r versus q and 01 versus q using the fixed-size algorithm for q 2 0 
and the fixed-mass one for z < 0 are shown. A typical multifractal behaviour is obtained. 
Table 8 summarizes the computed values of some multifractal indices in the q-representation 
for the GPD measure of this particular open-fractal electrodeposit. Also added are some 
representative values of the multifractal scaling behaviour of the GPD (harmonic measure) 
for a typical DLA pattern [23]. Characteristic values for a harmonic measure in simulated 
DLA patterns are: Do = D f  = 1.6-1.7 [14, 221, D ,  = 1 [24] and ~3 1 +am D f  125- 
271. The somewhat lower computed value of DO is due to the contour-regulariz.ation effect 
needed to ensure the convergence of the Laplacian solution [15. 171. Table 9~ summarizes 
the values obtained for some multifractal indices in the r-representation for the GPD measure 
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Figure'/. Indices r versus q for the open-fractal morphology when the mass-distributionmeasure 
is analysed. The two algorithm are used fixed size (e) and fixed mass (0). The regression 
range for the fixed-size algorithm is 68 p n  < e < 1104 pm. The regression range for the 
fixed-mass algorithm is the stmdard. 

h b l e  8. Same representative mdtifraaal indices in the q-representation for the open-fracwl 
morphology when the GPD measure is assumed Laplacian and for a D!A p a "  [231. The 
regressions in the boxsounting fixed-size algorithm applied to the GPD of opn-fiactd (ECD) are 
achieved in the range 60 pm < e < 1100 fim. 

Singularity DLA Open fractal (ECD) 
q exponent @armonic measure) Laplacian GPD 

inf q -5 -3 
F"J - -48.0 -7.5 i 0.8 

f (%f) - 0.0 0.10 f 0.01 
eiin f - 9.0 6.7 * 0.2 
Dinj - 7.0 1.9 f 0.2 

0 f @ o )  =of 1.64 i 0.1 1.53 fO.O1 
CO - 4.0 3.41 *0.09 

1 Dt = f(q) = q  1.04iO.01 0.983 f 0.005 
3 r ,  - 1.51 iO.02 

SUP 9 10 15 
rsUp - 6  8.8 i 0.2 
USUP 0.644.70 0.61 k 0.01 
f (LLmp) - 0.0 0.069 & 0.008 
DSUP - 0.65 0.63 i 0.01 

of this particular open-fractal electrodeposit. 

velocity of the perimeter growing sites show a robust multifractal behaviour (q 
Results for the more active growth sites determined experimentally from the normal 

0) which, 
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Figure 8. (a) Indices r versus g and (b) U versus q for the open-fractal molphology when the 
CPD measure is assumed.Laplacian. The two algorithms are used: fixed-size (0) and fixed-mass 
(0). The regression range for the fixed-size algorithm is 68 pm C 8 C 11M pm. The regression 
range for the fixed-mass algorithm is the standard. Standard enon on q values, when fixed-mass 
algorithm is used, are omitted for the sake of simplicity in (6). 

Table 9. Some representative multifracral indices in the r-representation for the open-fractal 
morphology when the CPD measure is assumed Laplacian. The regression m g e  is the standard 
in OUT fixedmass algorithm. 

Singularity Openhaetal 
T exponent Laplacian GPD 

inf r -50 
-13 f 2 

0.28 + 0.04 
3.5 f 0.5 
1.53f0.01 

-0.19 f 0.05 
0.64 & 0.04 

-0.21 f 0.04 

0.92 f 0.03 
8 

-0.3 f 0 . 3  . . 

b u p  11.2 i 0.5 
a r v n  1.33 i 0.07 -.., 
f(5s”p) -0.5 * 0.1 
D,, 0.79 * 0.04 

within the length scale range examined is compatible~with a Laplacian growth mode [16, 171. 
Fuaher work is in progress in order to extend this experimental comparison at r 4 0 using 
the fixed-mass algorithm [IS]. 
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7. Concluding remarks 

A new formalism, based on the t-representation, allows us to introduce the box-counting 
fixed-mass algorithm in a natural way. This procedure is especially suited for r < 0 (q  < 0) 
when estimating q(r)  and &(TI. The box-counting fixed-mass algorithm complements, in 
this way, the box-counting fixed-size algorithm, which is appropriate for the estimation df 
the multifractal indices in the range of q 2 0 (i > 0). 

Another important success of the fixed-mass algorithm is the accuracy attained in 
evaluating the asymptotic value of 6 = (Y-m ( l / t ~ - ~ ) ,  in contrast with that obtained when 
the fixed-size algorithm is used. 

The simultaneous application of these two algorithms allows us to extend the range 
of q to study the multifractal behaviour of some distributed measure, obtained either 
mathematically or experimentally. 
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