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Abstract. Two representations in multifractal analysis. the so-called ¢ and t representations,
are discussed theoretically and computed practically. Complementary to the standard g-
representation, the so-called r-representation is especially suited te resolving the most rarified
subsets of the distributed measure. Moreover, these two representations are especially adapted,
respectively, to the well known fixed-size and fixed-mass box-counting algorithms. Both
strategies are first applied to iteratively constructed mathematical measures. Once tested in
this way, we use them to analyse the mass distribution and the growth probability distribution
of an experimental electrodeposited pattern.

1. Introduction

Currently the characterization of a measure distributed on a support may be attempted by
using elements of multifractal analysis [1, 2]. Both the measure and the support are in
practice obtained either from iterative mathematical processes or from experimental data.
One way to base the multifractal analysis is proposed by Falconer [3] through the use of
the expression :

. ,
wmﬂ=E(Zkﬁ?) (1)
=l - !

where g and v are real numbers and p; and g; are random quantities that represent,
respectively, the measure factor and the size factor. The sum is extended over all the
separated parts, N, composing the object and E denotes expectation (the average value).
Defined in this way, the function @ represents the coupled g-moment of the measure and
the —7-moment of the sizel. When exactly iterated mathematical measures are examined
in this way the values g and t are shown to satisfy ®(g, ) = I [7], and thus expression (1)
can be written as

s . _
dopiET=1. @),
i=]

On the other hand, when an attempt is made to characterize an experimental measure,
expression (1), resolved either with p; = cnt or & = cnt, is assumed to collapse into a
constant value function ¥ (g, 7).

t E-mail address: jcrdi@daphne.qf.:;b.es

I Tn some more mathematically oriented papers [3, 4] a positive variable is defined as § = —v, and in others
{5, 6] they use y = —r.
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If g; = cnt, the size factor {g) can be taken out of the sum. Then directly from (1),

N{e)
a~cnz=>£{zp;?}~sf 3)

f=1
where N(¢) is the number of parts with size &, needed to cover the whole support Where
the measure is defined.

On the other hand, if the averaged quantity in (1) is weighted with the probability
distribution p;, we have

(p(‘*"”s"’}p ~cnt. A
Now, if we take p = cnr, expression (4) converts into

p~ent=>(g7), ~ p'™? 5)
where (), indicates the average value computed according to the probability distribution
pi-

In this way we have derived two alternative representations of multifractal indices,
taking either ¢ or 7 as the fundamental moment. Note, in addition, that according to their
respective definitions, each one of these representations is particularly well adapted to one
of the two versions of the box-counting algorithms, i.e. fixed-size or fixed-mass [5, 6, 8, 9],
commonly used in this context.

The multifractal indices used to characterize 2 non-uniform measure are: (i) the set of
generalized fractal dimensions D, = 7/ (g — 1) introduced by Grassberger, Hentschel and
Procaccia [8-10]; (ii) the so-called Holder exponent [1] &, satisfying o = dz/dg; and (iii)
the Legendre transformed function f(&), defined as f{o) = g — 1. The primary aim of
this paper is then to conveniently express and interpret these multifractal indices in the two
representations commented on above.

In section 2 we review the well known properties of the functions ¢ and f(«)
expressed in terms of g. Hereafter, we refer to this formulation as the g-representation.
Alternatively, in section 3 we present the properties of the functions « and f(e) expressed
in terms of 7. Hereafter, we refer to this formulation as the r-representation. In
order to show the complementary nature of these two representations, in section 4,
we present three examples generated via an iterated mathematical process [7, 11],
for which the multifractal behaviour may be solved exactly: one generated with the
size factor fixed, the other generated with the measure factor fixed and the third cne
generated without fixing any of the factors which define the measure. In section 5
we show how this dual formalism is easily adapted to box-counting algorithms in
their versions of fixed size or fixed mass. These algorithms are first tested with
the mathematical generated examples of multifractal measures introduced in section 4.
Finally, in section & we apply these algorithms to two measures (mass distribution and
growth probability distribution, GPD) defined on an experimental electrodeposited pattern.

2. Properties of the multifractal indices in the g-representation

Here we summarize the most important properties of the multifractal indices in the ¢-
representation (3) (demonstrations can be found in Halsey et al {7} and in Cawley and
Mauldin [4]). In this case T = T(g). Moreover, t'{g) = dr(g)/dg =gl =y, =«
and the Legendre transform of z(g) is f{x(g)) = qa(g) — 7(9) = f(e) = f, = f. From
the fact that v'(g) > 0, ©(g) is a strictly increasing function of ¢, o = ~Dy (the fractal
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Figure 1. Multifractal indices in the g-
Floee) representation, (a) Plot of z(g) versus q.
o (&) Plot of a(g) and f{x{g)) versus g. (¢)

a Spectrum of singularities f(w).

Table 1. Propenties of the multifractal indices in the g-representation.

q Characteristic values

-0 D =0 =y >0
Dy > flo—e) 2 0

0 Dy = Dy

wH =—D_f

Flato) = finax = Dy
1 71=0

Dy = = fa)

400 Dioo = Ohoo 2= Upin > 0
Dy 2 floa) 20

dimension of the support of the measure, which coincides with Dg) and 7y = 0. In [4] it
is demonstrated that either T”(g)} < 0 or t”(g) = 0, which, respectively, implies that e(g)
is either strictly decreasing (multifractal measure) or constant and equal to Dy (self-similar
measure). It is easy to see from the Legendre transform that fy = Dy, fi = @y = Dy and
f'(e(g)) = qt"(g). So either f{x) is constantly equal to Dy or f(z) is strictly increasing
from g = —oo to g = 0 and strictly decreasing from ¢ = 0 to oc. The asymptotic
behaviour of x(g) and f(x(g)) when g — +oo can be summarized in the following way:
®ioo = Dieo is a finite positive number and Dy > f(easo) > 0. All these properties are
summarized in figure 1 and table 1.
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3, Properties of the multifractal indices in the T-representation

In this case we have, alternatively, g = g(z}. According to (5), the properties of the
multifractal indices are, however, similar to those in the g-representation, with —v playing
the role of ¢ and 1 — g(7) that of 7(g). We can thus define, as in [5, 6, 12], D(z) =
7/{g(t) = 1) = D;. Moreover, d(1 —g(t))/d(~1) = dg(x)/dt =g’ () = &@(1) = &, = &,
which implies that & and —v are conjugated variables. Then, the Legendre transform
of 1 —-g()is fl@(@) = =@ -1 —g(®)) = f@ = f, = f. Itiseasyto
demonstrate that g'(7) > 0 and then that g(t) is a strictly increasing function of 7, go = 1

qfr)
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(a)

fa
flam) =0
Fla}

Fldew)
-1

v
'
:
1
1
|
'
.
v
.
H
0

(c)

Fignre 2. Multifractal indices in the z-
Tepresentation. {a) Plot of g(r) versus z. (§)
Plot of & and f(&) versus 7. (¢} Spectrum
of singularities f(&).

Table 2. Properties of the multifractal indices in the T-representation.

T

Characteristic values

-0

&oo = Bmin = 1/Doe > 0
D_w_= D_ o

02 fl@-c) 2 -1

q-p, =0

D..Df = Dy

go=1

Dy =1/ag

f(&o) = fonax =0

oo = Gmar = 1/Dsoc > 0
Dyoe = Do '

02 flde)2 -1
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Table 3. Equivalences between the two representations.

Representation q T
Moment q —r?
Scaling exponent t(g} 1—g(z)
Generalized dimensions Dy bt
conjugate variable )

of the moment e(g) = 1/a(z)
Legendre transform of the

scaling exponent Flel@) =+ f@en/ac*®

*Inf3, 41 f=—vandin[5 6] y = .
®In(3,12) Dy = D:. )
$In 1121 Flal(r) = fledg)/aig)-1. .

and g_ps = 0. Moreover, either ¢"(z) > 0 for all 7, or g”(z} = 0 which, respectively,
implies that &(z) is either strictly increasing (multifractal measure) or constant and equal to
1/ Dy (self-similar measure). It is easy to see from the Legendre transform that fo=0and
F!(@(r)) = —1g"(z). Thus, either f(&(t)) is constantly equal to O or F(&(z)) is strictly
increasing from v = —o¢ to 7 = 0 and striclly decreasing from z = 0 to T = oco. The
asymptotic behaviour of &(t) and f(&(z)) for t = o0 can be summarized in the following
way: @i IS @ finite positive number and 0 > f(G1eo) 2 —1. All these properties are
summarized in figure 2 and table 2. Furthermore, a summary of the equivalences between
the two representations is presented in table 3.

4. Exactly soluble examples

Next we apply the previous formalisms to iterated mathematical measures. We start with
an original region whose measure and size are taken arbitrarily as unity. Divide the region
into N pieces with measure p; and size ;. At the next step each piece of the set is further
divided into N pieces, each with a measure reduced by a factor p; and size reduced by
a factor g;, and so on [7, 10, 11]. Figure 3 shows an example of this iterative method
that allow us to construct multifractal measures with different size and different measure
factors.

4.1. Example I
If all pieces have the same size &; = &, then from (2) [7, 11]
CologY N 7 :
T e Og zr:l pl (6)
loge

and since T is expressed as a function of g, @ and f admit simple expressions in this
representation. Using the definitions quoted above we obtain

Yary Bilog pi F@) = iy Prlog b

— 7
loge loge 2

w(g) =

5 — pf N o

where p, = Pi/Zj:l P
The summarized results for the particular case of N = 3; p; = 13—6, ==

and & = % can be found in the first column of table 4,
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Figure 3. Example of the generation of an iterated mathematical multifractal with different size
and different measure factors. Here we show the three first iterations and the infinite one.

Table 4. Some representative multifractal indices in the g-representation of the exactly soluble
multifractal with equal size and different measure. The parametersare N =3, p; = -%, pr= 1—56,
3= !% and £ = % Computed results are obtained using a box-counting fixed-size algorithm -
on a grid of 512 x 512 pixels (scaling comesponds to 2.53 £ £ < 47.18 pixels).

g Singularity exponent  Mathematical result  Computed result
—00  tege=D_sp 241504 —
Floese) 0.000 00 —

-2 t2 —541564 —52+0.3
D.a _ 180521 1L7£03
aoy 2.10563 3.7+£02
Flo-2) . 120437 02%01

0 flepy=Dp= Df 1.58946 1.61 002
ap 1.69770 1.724-0.04
flany=a1=mDM 1.47722 149 £0.01

3 wm=2D; 2.62496 2.66 £0.04

20 7o - 199599 23.1£02
Dao 1.05263 12+£02
azn 1.00006 1L1+01
fletan) 0.001 24 02£01

+eo Upop = Diyne 1.00000 —

Fleraee) 0.60000 —_
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4.2. Example 2

Another example is given by the case in which all pieces have equal measures, p; =.p, but
different sizes, £;. In this case, manipulating (2} we obtain

log ¥l &
log p

and here g is clearly a function of 7, which allows us to use the 7-representation to obtain
& and f. Note that (8) does not contain (1 — g) because we need to start from (2)
(iterative multifractal process) and not from (5) (experimental or simulated pattern). Using
the definitions of &(r) and f (@(t)) quoted above, we obtain

g= ®

N B & = N Blogd
&(r)=““——z‘“fg loBS1 . Faey = Zimbio8h ©
ogp log p

where & =¢; "/ Eﬁ:, g .
The first column of table 5 summarizes the multifractal behaviour in the T-representation
for the particular case of N =3, 21 =0.6, &2 =04, 53 =03 and p = %

Table 5. Some representative multifractal indices in the T-representation of the exactly soluble
multifractal with equal measure and different size. The parameters are N = 3, & = 0.6,
g2=04,83=033and p= % Computed results are obtained using a box-counting fixed-mass
algorithm on a grid of 512 x 512 pixels. The regression range is the standard in our fixed-mass

algorithm,

T Singularity exponeat  Mathematical result  Computed result

-0 goce -0 — .
B - 0.46497 _

Fliose) —1.00000 —
Dy, 2.15066 . -

-30  g.% —~23.249 =237£02
&-s50 0.46497 049 £0.01
f@E_s0 —1.00000 —0.25 £ 0.06
D sp 206197 2032002

-Df  q-p 0.00000 0.10 £ 0.01
&, 0.69993 0.634 = 0.005
_f(&_ ) —0.06530 ~0.05+0.01
D_p, 1.33543 1.49 £ 0.01

0 g 1.00000 —
& 0.798 31 0.71 £ 0.01
F@o) 0.00000 —
Dg 125265 1414002
2 gs 2.85730 £.34 0,07
ag - 1.06993 1.01 £0.01
F@s) —0.7021¢ —0.77 £ 0.03
Dy 101816 1.09 + 0.01
o oo o —_
Fon 1.09590 —
Fle) ~1.00000 —

D 0.91249° —
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4.3. Example 3

In this last example we composed an object with neither the size nor the measure fixed
(figure 3). In this case it is not possible to find an explicit function g(z) or 7{(g) from (2}.
In order to obtain the pair of values {g, 7), we use the Newton—Raphson method, which
converges very quickly. For each pair of values (g, T} the quantities a(g), f(a(g)), &(z),
f(@(z)) are determined using the definitions explained in sections 2 and 3. The explicit
expressions for «(g) and f(x(g)) can be found in Cawley and Mauldin [4]:

N N
@)= ple logpi [ Y pler loge (10)
=1 =1
N N
f @@y = pler og(pfer™) [ ) pler loge. (1)
J=1 ' =1

For the expressions of &(t) and F(&(r)) we use the definitions introduced in section 3,
which can be written as

N N
&(t) = Z pie" logs; / Z ple " log pi (12)
=1 =1
B N : N
Faw) = pleioa(p V) [ 3 veittog i a3)
i=] i=1

The first columns of tables 6 and 7 summarize, respectively, the multifractal behaviour

for the particular case N = 3, £y = 0.6, &, = 04, &3 =03 and p1 = &, p2 = &,
D3 = % when the g-representation and 7-representation are used. Note that in this case

Table 6. Some representative multifractal indices in the g-representation of the exactly scluble
muktifractal with different size and different measure. The parameters are N = 3, g1 = 0.6,
g2 =04, 3 =03 and p; = -133 P = —153. = % Computed results are obtained using
a box-counting fixed-size algorithm on a grid of 512 x 512 pixels (scaling corresponds to
343 < £ < 109.7 pixels).

4 Singularity exponent  Mathematical result  Computed result
—00 Oepe = Do 327700 —_
Fle-c) - 0.00000 - —
-2 T_3 —6.604 59 —42403
D_a 2.20153 14+0.3
[V 3.18321 3.1x01
Flaz) 0.238 16 04401
0 Sflapy=Dop= Dy 1.33543 1.37£0.02
o 1.72603 1.73£0.05
1 fley=ai=D 1.04046 1.07£0.03
3 1y3=2Ds 1.59552 1.66 £0.07
20 1 11.5143 12102
Dy 0.60602 0.6+02
.21 0.57572 0.61+0.06
flez0) 0.00003 0.02£0.05
460 Qo = Dic 057572 —

Fletes) 0.00000 —
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Table 7. Some representative multifractal indices in the v-representation of the exactly solubke
multifractal with different size and different measure. The parameters are & = 3. &3 = 0.6,
g2 =04, =03 and p; = -fg, = ]53, pr = 115- Computed results are obtained using a
hox-counting fixed-mass algorithm on a grid of 512 x 512 pixels. The regression range is the
standard in our fixed-mass algorithm.

T Singularity exponent  Mathematical result  Computed result
00 faa: —oo -_
Goo 0.305 16 —
Fla-w) —1.00000 _
Do 327700 —
~50  gaso ~15.258 —15.1%£0.7
G50 0.30516 . 0.31£001
fla-s) —1.00000 —0.6:0.3
Do 3.07544 3.1£01
=Dy g-p; 0.00000 0024003
- D, ~ 0.57936 . 0.60 £0.02
Fla_p,) —0.226 40 —0.17 %+ 0.81
D_p, 1.33543 137+£0.04
0 @ 1.00000 — -
& 0.96111 0.94 £ 0.01
Fléa) 0.00000 —
Dy 1.04046 1.12 £0.02
8 g3 13.8959 127£0.3
Fy 1.73673 1.60 £ 0.04
Flas) —0.99793 —12+02
Dy 0.62035 . 069 £0.02
o0 Joa oc _
oo 173697 - —
F(@ia) —1.00000 S—
Doe 0.57572 —

the two representations may be equally used to characterize the multifractal behaviour
of this distributed measure. It is also easy to check the equivalences between the two
representations as listed in table 3.

5. Application to box-counting algorithms

When experimental, rather than mathematical, measures have to be examined in terms of
their multifractal properties we need to resort to box-counting algorithms. The two most
popular routines are the fixed-size and fixed-mass algorithms. As is shown in what follows,
each one is particularly adapted to one of the two representations presented above.

5.1 Box-counting fixed-size algorithm

The well known fixed-size box-counting algorithm is based on (3) and the mean value is
obtained as an averaged value of the so-called partition function Z,(e) = E:\;(f) pie) {8, 9]

log E (Z,(e))

loge b

t{g) = lim,_.g
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Clearly, in this case T is expressed as a function of g. Thus it seems natural to use the
g-representation to obtain expressions for the o and f indices. Following the treatment of
Chhabra and Jensen [13], which avoids the numerical use of the Legendre transform, we

have {14-18}
THO 5i(s) log pile)

a(g) = limeno foge (15}
VO 5 (o3 log 5
@) = lim,.p il PO R PO a6)

where 5i(e) = pf (e)/ 1,57 P (@),

Note that, as expected, expressions (14)-(16) bear a close similarity with those used for
the exactly soluble example 1. The second column of table 4 summarizes the computed
values of the more relevant multifractal indices in the g-representation for the exactly soluble
multifractal of equal size (example 1). The computed results and the exact values show a
good agreement only for g = 0 (given their error bars). For very large values of g some
round-off errors can be detected. On the other hand, for g4 < 0 the computed a{g) values
are significatively greater than the exact ones and this is due to the computational strategy
of the implemented algorithm [18].

5.2. Box-counting fixed-mass algorithm

In the case of the box-counting fixed-mass algorithm introduced by Badii and Politi [5, 6]
it is shown that from (5),

NP} -
g T &)

where N (p) is the number of boxes with measure p used to evaluate the average in (5). Note
that N(p), in this case, does not necessarily count all the boxes with equal measure needed
to cover the pattern, but only a predefined subset [12, 18]. In this case ¢ is expressed as a
function of z, thus it seems natural to use the r-representation in order to obtain expressions
for & and f indices. With some algebra, and following a similar procedure to that employed
for the fixed-size algorithin, we obtain:

7 LI Bi(p) log & (p)

&) = limp—g oz p (18)
. s TN 2, (p) log &:(p)
F@(2)) = limp_,o X2 o7 (19)

where &(p) = &7°/[1/N(p) T &1,

These expressions, again as expected, show close similarities with those used for the
exactly soluble example 2, but with the difference that here we take an average over a
subset of boxes having the same mass (p).

The last expressions (17)-(19) enable us to implement the fixed-mass box-counting
algorithm, and obtain all the multifractal indices directly, i.e. the f(&) and then the f(a)
spectrum of singularities. These expressions are particularly useful in the study of the
mutltifractal behaviour at ¢ < 0, ie. &t = £ 0, precisely where the fixed-size algorithm
fails. The regression range of p is standardized choosing the maximum value of p of the
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distribution as the lowest bound and the maximum value of p resulting from box-counting
as the greatest bound [18].

The second column of table 5 summarizes the computed values of some multifractal
indices in the tr-representation for the exactly soluble multifractal of equal measure
(example 2). The agreement is very good for g() and for &(z) indices, specially for < 0
(g < ) giving a good estimation for &—co {1/0-q), the asymptotic value. However, the
F() index is overestimated, especially for T < 0. This is nothing but an artefact of the
computational strategy of the implemented fixed-mass algorithm [18], here applied to an
iterated multifractal with few iterations. Actually, we have taken a grid of 512 x 512 pixels
to reproduce the usual working conditions with experimentally determined measures, Then,
acceptable standard errors in &(t) and ¢(7) indices (~1%) for T « 0 (e.g. —50) propagate
an standard error of 50-100% [18].

5.3. The use of both box-counting algorithms

For the exactly soluble multifractal of different size and different measure (example 3,
see figure 3), table 6 summarizes some computed values of mudtifractal indices in the g-
representation obtained using the fixed-size algortihm and table 7 the corresponding results
in the T-representation using the fixed-mass aigorithm. For this case, the computed values
show good agreement with the exact ones. :

Summarizing the above results, we conclude that the fixed-size algorithm should be used
in the g-representation and iz especially suited for g 2 0, whereas the fixed-mass algorithm
should be used, complementarily, in the 7-representation where it is especially suited for
t £ 0. Transforming, according to the previously introduced equivalences, we complete
either one of the pair of representations to finally end up with a whole range robust and

10

=10

w20 ~
=30 —
,40_
50 T ] T T ] ]
45 46 5 0 5 1 15 20
q
(a} (b

Figuvre 4. Indices t versus g (¢) and & and f{e) versus g (&) for the exactly soluble example
with different size and different measure. The full eurve represents the exact behaviour and
the discrete points stand for the values computed with the two proposed afgorithms: fixed size
(®) and fixed mass (O). The regression range for the fixed-size algorithm is 3.43 < £ < 1097
pixels. The regression range for the fixed-mass algorithm is the standard. Standard errors on g
valnes, when fixed-mass algorithm is used, are omitted for the sake of stmplicity in (b).
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1
2
[ ) o

104

=10 =

~20 -

=3O =

-40

Figure 5. {g) Indices  versus g and (b) o and f{er} versus g for the exactly soluble example
with equal size and different measure. The full curve represents the exact behaviour and the
discrete points stand for the values computed with the two propased algorithms; fixed size (@)
and fixed mass (0). The regression range for the fixed-size algorithm is 2,53 € ¢ < 47.18
pixels. The regression range for the fixed-mass algorithm is the standard. Standard errors on ¢
values, when fixed-mass algorithm is used, are omitted for the sake of simplicity in ().

reliable multifractal description [14, 18]. This is exactly the strategy that we have followed
to construct the results depicted in figure 4.

To emphasize the appropriateness of the fixed-mass algorithm when trying to evaluate
the asymptotic value of &_o (1/¢_x), we show in figure 5(b) plots of o, f(&) versus g.
This figure shows that the estimation of o with the fixed-size algorithm is, for g slightly
negative, already almost two times greater than the exact value. In contrast, the ¢ values
obtained with the fixed-mass algorithm are very close to the exact ones.

6. Application to experimental measures

Quasi-two-dimensional electrochemical deposition (ECD) is 2 typical example of pattern
formation under non-equilibrium conditions. Typically in these experiments, a metallic
deposit is formed in a thin layer of an aqueous electrolyte solution containing the metal
cation. It has been clearly shown that different electrodeposit morphologies are obtained
when control parameters, including applied potential or current, cation concentration, cell
dimensions, etc [19, 20] are adequately modified.

Among the different electrodeposit morphologies, open-fractal structures are formed
in zinc electrodeposition experiments using a film cell at small applied potential values
(experimental conditions are listed in the caption of figure 6). In this case, fractal
concepts are necessary, not only to characterize these aggregates morphologically, but most
interestingly to capture the subtle details of their dynamical evolution and general behaviour.

In order to describe the multifractal behaviour of the mass distribution of the open-
fractal electrodeposits, a particular electrodeposit is chosen (figure 6) [16, 19, 20]. Figure 7
shows the joined 7 versus g functiofl in the g-representation obtained using the fixed-size
algorithm for g 2 0 and the fixed-mass one for 7 < 0. This linear behaviour corroborates
the uniform, non-multifractal, characteristic of the mass distribution measure for a range of
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Figure 6. Quasi-two-dimensional electrbdeposit grown in a pa:rallel cell (70 pm thickness,
electrode length 3.5 cm and electrode separation 3 ¢cm). Open-fractal morphology (512 pixels
= 6.5 mm), grown at [ZoS803] =04 Mand AV =6V,

g (—28 £ g < 25) wider than in any previous work [14, 16, 19, 21]. A linear regression fit
of T versus ¢ gives from its slope the fractal dimension Dy.estimated as (D,) = 1.68=0.02,
which is in agreement with previous resuits {14, 16, 19, 21] and similar to that obtained for
DLA patterns DypLay = 1.6-1.7 [14, 22]. ‘

In order to gain a better understanding of the growth dynamics governing fractal
electrodeposition, we would need to compare the multifractal scaling of the experimentally
computed growth probability distribution (GPD), with that -corresponding to a Laplacian
growth mode [16, 17]. Here, we only preseat the multifractal scaling behaviour of this
measure obtained assuming a Laplacian growth mode [15, 17], for the open-fractal zinc
electrodeposit examined above (figure 6). The GPD on every perimeter site of the metallic
aggregate is computed here in terms of the normal gradient of a Laplacian field, V2¢ = 0,
solved with boundary conditions ¢ = 0 at the perimeter and ¢ = 1 far away from it. -
In figure 8 plots of T versus ¢ and o versus g using the fixed-size algorithm forg = 0
and the fixed-mass one for 7 £ 0 are shown. A typical multifractal behaviour is obtained.
Table & summarizes the computed values of some muitifractal indices in the g-representation
for the GPD measure of this particular open-fractal electrodeposit. Also added are some
representative values of the multifractal scaling behaviour of the GPD (harmonic measure)
for a typical DLA pattern {23]. Characteristic values for a harmonic measure in simulated
DLA patterns are: Dy = Dy = 1.0-1.7 {14, 22], D; =1 [24] and 75 >~ | + wee =2 Dy [25-
27]. The somewhat lower computed value of Dy is due to the contour-regularization effect
needed to ensure the convergence of the Laplacian solution [15, 17]. Table 8 summarizes
the values obtained for some multifractal indices in the 7-representation for the GPD measure
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Figure 7. Indices 7 versus g for the open-fractal morphology when the mass-distribution measure
is analysed. The two algorithros are used: fixed size (@) and fixed mass {O). The regression
range for the fixed-size algorithm i5 68 um < £ & 1104 um. The regression range for the
fixed-mass algorithm is the standard.

Table 8. Some representative multifractal indices in the g-representation for the open-fractal
morphology when the GPD measure is assumed Laplacian and for a pLA pattern [23]). The
regressions in the box-counting fixed-size algorithm applied to the GeD of open-fractal (ECD) are
achieved in the range 60 pm < £ < 1100 pm.

Singularity DLA Open fractal (ECD)
g exponent (harmonic measure)  Laplacian GrD
inf ¢ -5 -3
Tinf ~ —48.0 =7.5+0.8
inf ~9.0 67+£02
F(@ing) ~0.0 0.10 £0.01
Dy ~7.0 1.9%£02
0 fleg) =Dy 1.64 0.1 1534001
7 ~ 4.0 341 £0.09
1 Dy =fly)=a 1.04 £0.01 0.983 £ 0.005
3 T3 — 1.51 =002
sup g 10 15
Tsup ~ & 8.8+£02
s 0.64-0.70 0.61 4 0.01
J(@eup) ~ 0.0 0.069 £ 0.008
Dsyp ~0.65 0.63 +£0.01

of this particular open-fractal electrodeposit.
Results for the more active growth sites determined experimentally from the normal
velocity of the perimeter growing sites show a robust multifractal behaviour (g 2 0) which,
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Figure 8. (2) Indices 7 versus g and (b) ¢ versus g for the open-fractal morphology when the
GPD measure is assumed Laplacian. The two algorithms are used: fixed-size (@) and fixed-mass
(). The regression range for the fixed-size algorithm is 68 pm < £ < 1104 ,u.m The regression
range for the fixed-mass algosithm is the standard. Standard errors on g values, when fixed-mass
algorithm is used, are omitted for the sake of simplicity in (5).

Table 9. Some representative muitifractal indices in the T-representation for the open-fractal
morphology when the GPD measure is assumed Laplacian. The regression range is the standard
in our fixed-mass algorithm,

Singularity  Open fractal

T exponent Laplacian GPD
inf T =50
Ginf —-13+£2
@in f - (0284004
f:(&,-,,f) —-0.3£03
Digg =~ . 335203
-Dy Dy 1.53 £ 0.01
9-p; —0.19 £ 005
' f@-p, 0.64 £ 0.04
Ff@-p)  ~021:£004
0 Do=1/ay 092+003
sup T 8
Gsup 11.24+05
&_,,,P 1.33 £ 0.07
F@eup) —05+0.1
Dy 0.79 £ 0.04

within the length scale range examined is compatible with a Laplacian growth mode [16, 17].
Further work is in progress in order to extend this experimental comparison at T < 0 using

the fixed-mass algorithm [18].
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7. Concluding remarks

A new formalism, based on the t-representation, allows us to introduce the box-counting
fixed-mass algorithm in a natural way. This procedure is especially suited forz < 0 (g < 0)
when estimating g(z) and &(7r). The box-counting fixed-mass algorithm complements, in
this way, the box-counting fixed-size algorithm, which is appropriate for the estimation of
the multifractal indices in the range of g = 0 (z = Q).

Another important success of the fixed-mass algorithm is the accuracy attained in
evaluating the asymptotic value of & = &_o, (1 /t—o), il contrast with that obtained when
the fixed-size algorithm is used.

The simultaneous application of these two algorithms allows us to extend the range
of g to study the multifractal behaviour of some distributed measure, obtained either
mathematically or experimentally.
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